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The Bernoulli Property for Weakly Hyperbolic Systems
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A dynamical system is called partially hyperbolic if it exhibits three invariant
directions, one unstable (expanding), one stable (contracting) and one central
direction (somewhere in between the other two). We prove that topologically
mixing partially hyperbolic diffeomorphisms whose central direction is non-uni-
formly contracting (negative Lyapunov exponents) almost everywhere have the
Bernoulli property: the system is equivalent to an i. i. d. (independently identi-
cally distributed) random process. In particular, these systems are mixing: cor-
relations of integrable functions go to zero as time goes to infinity.

We also extend this result in two different ways. Firstly, for 3-dimensional
diffeomorphisms, if one requires only non-zero (instead of negative) Lyapu-
nov exponents then one still gets a quasi-Bernoulli property. Secondly, if one
assumes accessibility (any two points are joined by some path whose legs are
stable segments and unstable segments) then it suffices to requires the mostly
contracting property on a positive measure subset, to obtain the same conclu-
sions.

KEY WORDS: Bernoulli maps; weakly hyperbolic systems; mixing; robustly
mixing.

1. INTRODUCTION

Chaotic dynamics is associated to loss of memory and creation of infor-
mation (two aspects of the same phenomenon) as the system evolves time.
Indeed, orbits starting at nearby points forget this fact rather rapidly; the
evolution of each orbit yields new information, which can not be deduced

1IMPA, Estrada D. Castorina 110, Jardim Botânico, 22460-320 Rio de Janeiro, Brazil
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from the initial data nor from the evolution of another orbit. This idea
can be formalized in several (non-equivalent) ways. One is encapsulated in
the notion of entropy, the exponential rate of creation of information by
the system. Another, which concerns us more directly here, is through the
mixing property: a system is called mixing if measurements of any observ-
able quantity at same latter time correlate poorly with the initial measure-
ments of the same, or any other, observable quantity. There are several
stronger (and a few weaker) versions of this notion. The strongest is the
Bernoulli property: a system is Bernoulli if it is ergodically equivalent to
an i. i. d. random process. In simple terms, iterations of the system are as
chaotic (unpredictable) as successive throws of a coin.

It is now well established that mixing is closely related to hyperbolici-
ty properties of the dynamical system. On one hand, there was the funda-
mental work of Anosov(3) proving that the geodesic flow on any negatively
curved manifold is ergodic. The strategy was to prove that these flows are
uniformly hyperbolic (meaning that the tangent space transverse to the flow
splits into two invariant directions which are expanding and contracted,
respectively, at uniform rates, under time evolution) and to deduce ergo-
dicity from it. A powerful machinery developed for hyperbolic systems in
the sixties and the seventies shows, in particular, that Anosov flows are
Bernoulli.

On the other hand, there was the equally remarkable theory of
Kolmogorov, Arnold, Moser showing that most elliptic systems are not
ergodic, let alone mixing or Bernoulli. For instance, close to an elliptic
point most of phase space is occupied by invariant tori restricted to which
the dynamics is given by a rigid rotation, up to a smooth change of coor-
dinates.

Roughly speaking, this connection between mixing properties and hy-
perbolicity goes as follows. Expansion along certain directions of the tan-
gent space means that most nearby points tend to move away from each
other, so that their orbits decorrelate rapidly. The same is true for contrac-
tion, considering backward iterates. For smooth systems, as we are consid-
ering here, this local behavior is reflected at the global level.

Over the last decade, there has been a great deal of attention devoted
to investigating the mixing properties of systems lying somewhere in
between the two extreme situations, hyperbolic and elliptic, that we dis-
cussed before. Most successful attempts dealt with partially hyperbolic
systems, where one still asks for expanding and contracting invariant
directions, but one allows for additional so-called central directions, where
the behavior is rather arbitrary. Concrete examples of partially hyperbolic
systems arise in several applications, for instance hard ball systems with
many balls(16) that model the motion of ideal gases (however hard ball
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systems correspond to piecewise smooth maps). Our goal in this paper is
to prove that, in fact, quite weak hyperbolicity features suffice for the sys-
tem to be mixing and even Bernoulli.

Before we give precise statements of our results, let us mention a
few previous related results. On one hand, there are the works of Pugh,
Shub(15) and their collaborators, investigating stable ergodicity for conser-
vative (volume-preserving) diffeomorphisms. A dynamical property is sta-
ble (or robust) if it is shared by all systems in a C1 neighborhood. A
key ingredient in this approach is the notion of accessibility: a system
is accessible if any two points may be joined by a smooth path whose
velocity is everywhere contained in the union of the stable and unstable
direction. Dolgopyat, Wilkinson(12) recently proved that accessibility holds
for generic (residual subset of) C1 diffeomorphisms, conservative or not.
Moreover, Bonatti, Matheus, Viana, Wilkinson(9) proved that generic par-
tially hyperbolic diffeomorphisms with 1-dimensional central direction are
stably ergodic.

On the other hand, there is the work of Alves, Bonatti, Viana(2,10)

on the ergodic properties of partially hyperbolic diffeomorphisms, not
necessarily conservative. They exploit the combination of partial hyperb-
olicity and non-uniform hyperbolicity (non-zero Lyapunov exponents) to
prove existence and finiteness of physical measures for those systems. We
prove here that the examples that appear in both papers above have the
Bernoulli property. Let us point out that Bochi, Fayad, Pujals(5) prove that
generic stably ergodic conservative systems are non-uniformly hyperbolic.

The two approaches have been put together by Burns, Dolgopyat,
Pesin(11) in a work which may be considered a predecessor to the present
paper. In a few words we push their analysis further to obtain the Ber-
noulli property rather than just ergodicity.

We point out that ergodicity implies chaotic properties like, for
instance, topological transitivity (existence of dense orbits). But the sole
assumption of transitiveness does not guaranty that the system is ergo-
dic: Furstenberg exhibited in ref. 13 a minimal but non-ergodic diffeomor-
phism. So, instead of a topological property of a single system we ask
for robustness (it holds in a neighborhood of the system) of such topo-
logical behavior in the attempt to derive any statistical/ergodic property.
Related to this Bonatti, Diaz and Pujals(8) proved that robustly transi-
tive dissipative diffeomorphisms have some kind of weak hyperbolicity (the
tangent bundle splits into two invariant directions, one contracting direc-
tion and one central direction). Arbieto and Matheus(4) proved that the
same result holds for C2 robustly transitive conservative diffeomorphisms.
Tahzibi(17) proved that robustly transitive partially hyperbolic diffeomor-
phisms with central direction mostly contracting are stably ergodic. Here
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we extend this last result of Tahzibi replacing the robust transitiveness
hypothesis by robust topologically mixing hypothesis, and obtain, instead
of ergodicity, the Bernoulli property for these systems. We also prove
that the systems in T

4 studied by Tahzibi in ref. 18 have the Bernoulli
property.

In this paper we shall prove the Bernoulli property for four different
classes of systems. In the first class are the systems that are topologically
mixing and partially hyperbolic with negative Lyapunov exponent along
the central direction for almost every point. Under the additional hypoth-
esis of robustly topological mixing we obtain robustness of the Bernoulli
property. In the second class we relax the hypothesis about the Lyapu-
nov exponents asking only non-zero Lyapunov exponents along the cen-
tral direction and obtain that the system is quasi-Bernoulli, meaning that
the system is Bernoulli in an ergodic component with measure arbitrarily
large. The strategy to obtain that the systems in these two classes are Ber-
noulli is to use a result by Pesin,(14) which in brief terms says that if the
system is non-uniformly hyperbolic and every of its iterate is ergodic then
the system is Bernoulli. Hence, the goal is to prove that any iterate of
a system in these classes are ergodic. For this we use the non-uniformly
contracting condition (non-negative Lyapunov exponents along the cen-
tral direction) to obtain local ergodicity and use the topological mixing
property to spread the ergodicity to the whole manifold. Since iterates of
a topologically mixing system is still topologically mixing, we repeat this
argument and obtain that all iterates are ergodic. To conclude we apply
Pesin’s result described above.

In the last two classes are the strong partially hyperbolic systems (sys-
tems that have two non-zero hyperbolic directions besides a central direc-
tion) which are accessible (any two points can be joined by a piecewise
smooth path with each piece tangent to one of the hyperbolic directions)
and satisfy some additional hypothesis. The main strategy to prove that
these systems are Bernoulli is again to use the result of Pesin described
before. So we should be able to obtain ergodicity of all the iterates of
the system. The additional hypothesis that distinguishes the classes are to
guaranty local ergodicity for systems in each class. And accessibility allows
to spread the local ergodicity to the whole of M. Since all iterate of an
accessible system is still accessible we can repeat the same argument for
each iterate and obtain ergodicity for all iterate. Applying Pesin’s result we
conclude that the system is Bernoulli. We also obtain robustness of the
Bernoulli property for systems in these two classes, without requiring stable
accessibility. For this we analyse the Pinsker partition (the maximal par-
tition with zero entropy) used in the proof of Pesin’s result. Actually, we
find a uniform bound for the number of atoms of this partition in a neigh-
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borhood of the original system. This allow us to use the previous methods
to obtain that the system is robustly Bernoulli.

The paper is organized as follows. In the next section we give some
definitions and the precise statements of our results. In Section 3 we give
the proofs of the theorems. In Section 4 we study a construction due to
Bonatti and Viana(10) and as an application of our methods prove that it
yields Bernoulli systems. Finally, in Section 5, we point out how obtain
some extensions and discuss some open problems.

2. DEFINITIONS AND STATEMENT OF THE RESULTS

Throughout we will use the notation Diff1+
m (M) := ⋃

α>0
Diff1+α

m and the

diffeomorphisms considered here will be always in Diff1+
m (M). We will deal

with robust properties, but since they arise from different nature we need
to specify the topologies involved.

Definition 2.1. A diffeomorphism f is robustly transitive (resp.
robustly topologically mixing) if there exists a neighborhood U⊂Diff1+

m (M)

in the C1-topology such that any g ∈ U is transitive (resp. topologically
mixing).

Obviously any topological mixing diffeomorphism is transitive.

Definition 2.2. A diffeomorphism f is robustly ergodic (resp.
robustly Bernoulli, robustly mixing) if there exists a neighborhood U ⊂
Diff1+

m (M) in the C1-topology such that any g ∈ U is ergodic (resp. Ber-
noulli, mixing).

We recall that by definition, a Bernoulli system is equivalent to a Ber-
noulli shift. It is easy to see that if f is Bernoulli then it is mixing.

We say that a property is generic robustly if it holds in a neighbor-
hood intersected by a residual set. For example, f is generic transitive if
there exists a neighborhood U ⊂Diff1+

m (M) in the C1-topology and a resid-
ual set R such that any g ∈U ∩R is transitive.

Next we state our results, in the different settings of partial hyperbo-
licity.

Partially Hyperbolic Systems
First let us recall some definitions.

Definition 2.3. A Df -invariant splitting T M = E ⊕ F is a domi-
nated splitting if there is λ<1 such that:

‖Df |Ex ‖
m(‖Df |Ff (x))

‖) �λ for all x ∈M. (1)
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We will use also the notion of a k−dominated splitting of E ⊕F along the
orbit of a point x. We require that for all n∈Z:

‖Df k
f n(x)|F ‖

m(Df k
f n(x)|E)

� 1
2
,

where m(A)=‖A−1‖−1. By a k−dominated splitting over an invariant set
D we mean a k−dominated splitting for all orbits in D

Observe that Eq. (1) implies that any possible contraction along F

is weaker than any contraction along E. This also implies that successive
iterates of a vector in the tangent bundle by the derivative of f eventually
lean toward the F direction.

A diffeomorphism f is partially hyperbolic if it has a dominated split-
ting E ⊕F such that at least one of the sub-bundles is hyperbolic (either
uniformly contracting or expanding). The complement of the hyperbolic
sub-bundle is called the central bundle or equivalently central direction. We
denote by PHr (M) (respectively PHr

m(M)) the set of partially hyperbolic
(respectively conservative partially hyperbolic) diffeomorphisms.

We can define the Lyapunov exponents of the system with respect to
an invariant measure as the following:

Definition 2.4. Let f : M → M be a C1 diffeomorphism of a com-
pact manifold that preserves a volume m. Oseledets theorem states that,
for m−almost every point x ∈ M, there exist real numbers λ1(x) > · · · >
λk(x)(x) and

TxM =E1
x ⊕· · ·⊕Ek(x)

x

such that:

lim
n→∞

1
n

log ‖Df n(x)(vj )‖=λj (x) for all vj ∈E
j
x\{0}.

For each j , λj is the Lyapunov exponent along the sub-bundle Ej and it
depends measurably on x.

Definition 2.5. We say that the central direction of f ∈PHr
m(M) is

non-uniformly contracting if m-almost every point x has negative Lyapu-
nov exponents along the central direction.

Now we can state our first result.
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Theorem A. Let f ∈ Diff1+
m (M) be a topologically mixing partially

hyperbolic diffeomorphism with central direction non-uniformly contract-
ing. Then (f,m) is Bernoulli and, in particular mixing.

From this theorem we obtain immediately an extension of a result by
Thazibi(17):

Corollary 2.6. If f is robustly topologically mixing and T M =
Eu ⊕ Ecs with central direction Ecs non-uniformly contracting then f is
robustly Bernoulli.

We note that in ref. 10 the authors constructed an example in T
3 which

is robustly transitive and stably ergodic. In Section 4 we show that this
example is in fact robustly topologically mixing.

We can relax the hypotheses in Theorem A requiring only non-zero
Lyapunov exponents (non-uniformly hyperbolicity). Unfortunately we do
not obtain the Bernoulli property in the whole manifold, but it holds for
an arbitrarily large region in the sense of Lebesgue measure. To announce
our next result let us introduce the following definition.

Definition 2.7. A diffeomorphism f is ε-Bernoulli if there exist an
ergodic component C of the Lebesgue measure m such that m(C)> 1 − ε

and if mC is the normalization of the Lebesgue measure to C, (f |C,mC)

is Bernoulli. A diffeomorphism is quasi-robustly Bernoulli if for any ε>0
there exist an open set Uε ⊂Diff1+

m (M) ε-close to f such that any g∈Uε is
ε-Bernoulli.

With this we obtain an extension of a theorem by Tahzibi:

Theorem B. If dim(M) = 3 and U ⊂ PH1+
m (M) is an open set such

that generically in U any diffeomorphism is non-uniformly hyperbolic and
topologically mixing then generically in U any diffeomorphism is quasi-
robustly Bernoulli.

Strongly Partially Hyperbolic Systems
Now we focus in strongly partially hyperbolic systems, that is, systems

that have two genuine hyperbolic directions (contracting and expanding)
and a center direction. That is, the tangent bundle admits a dominated
splitting T M = Eu ⊕ Ec ⊕ Es where Eu (respectively Es) is uniformly
expanding (respectively contracting). This allow us to use accessibility,
instead of topological mixing, to spread out the negative Lyapunov expo-
nents as in Theorems 2, 3 and 4 of ref. 11 and obtain the Bernoulli prop-
erty rather than just ergodicity.
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Definition 2.8. We say that f is accessible if any two points p,q ∈
M can be joined by piecewise smooth paths such that each piece is a path
entirely contained on a stable leaf or a unstable leaf. We call these paths
a us-path. We say that f has the essentially accessible if any measurable
union of accessible sets (i.e. any two points in each of these sets can be
joined by a us-path) must have zero or full measure. Each piece of the us-
path is called a leg.

Next we state the generalizations of the results by Burns, Dolgopyat
and Pesin(11).

Theorem C. Let f be a strongly partially hyperbolic diffeomor-
phism with negative Lyapunov exponents along the central direction for a
positive measure set A and suppose that f is essentially accessible. Then
A has full measure. In particular f is Bernoulli and its central direction is
non-uniformly contracting.

Theorem D. Let f be an accessible strongly partially hyperbolic
diffeomorphism satisfying

∫
M

log ‖Df |Ec
f (x)‖dm(x)<0 .

Then f is robustly Bernoulli.

Theorem E. Let f be an accessible strongly partially hyperbolic
diffeomorphism with central direction non-uniformly contracting. Then f

is robustly Bernoulli.

Remark 1. We observe that the hypotheses in the previous theorem
as well the hypotheses of corollary 2.6 imply that f is C1-robustly mostly
contracting (see ref. 2).

We can strength these theorems using a denseness result by Dolgopyat
and Wilkinson ref. 2. This will be done in Section 5.

3. PROOF OF THE THEOREMS

3.1. Proof of Theorem A

We will follow Hopf’s argument as used in refs. 10, 11 and 17. For
the sake of completeness we give such argument.

By non-uniform hyperbolicity we have a countable number of ergo-
dic components. Now, take an ergodic component C and R ⊂C (with full
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Lebesgue measure in C) the set of regular points in the sense of Birkhoff’s,
i.e., if x ∈R then:

lim
n→∞

1
n

n−1∑
i=0

ϕ(f i(x))= lim
n→−∞

1
n

n−1∑
i=0

ϕ(f i(x)) for any ϕ ∈C0(M).

Then by Pesin’s theory, any x ∈R has a local stable manifold Wcs
ε (x) and

if mcs is the induced measure in Wcs
ε (x) then mcs is absolutely continu-

ous. This implies that there is a x ∈C and Cx ⊂Wcs
ε (x)∩C ∩R such that

mcs(W
cs
ε (x)\Cx)=0. By partial hyperbolicity, any point has unstable mani-

folds with size uniformly away from zero. Now take Ux =⋃
y∈Wcs

ε (x) W
u(y).

Then, by continuity of the unstable foliation, Ux contains an open set.
And for every y ∈Cx and z∈Wu(y) we have:

lim
n→−∞

1
n

n−1∑
i=0

ϕ(f i(z)) = lim
n→−∞

1
n

n−1∑
i=0

ϕ(f i(y))=

= lim
n→∞

1
n

n−1∑
i=0

ϕ(f i(y)) = lim
n→∞

1
n

n−1∑
i=0

ϕ(f i(z)) .

Then, using absolute continuity of Wu,
⋃

y∈Cx
Wu(y) has full measure in

Ux and hence C contains a total Lebesgue measure subset of the open set
Ux . Finally, transitiveness shows that there exists a unique ergodic compo-
nent with full Lebesgue measure and thus f is ergodic.

Now we use a theorem by Pesin (which is in fact a corollary of The-
orem 8.1 in ref. 14):

Theorem 3.1. If f ∈ Diff1+
m (M) is non-uniformly hyperbolic such

that (f n,m) is ergodic for any n�0 then f is Bernoulli.

Because being topologically mixing and have negative Lyapunov
exponents in the Ecs direction is an invariant property for all iterates
f k. Then, by the previous argument, all of (f k,m) are ergodic and
non-uniformly hyperbolic then the above theorem shows that (f,m) is
Bernoulli.

Proof of Corollary 2.6. Let U be the open set given by the hypoth-
esis. Then by Theorem A any g ∈ U is Bernoulli. This implies that f is
C1-robustly Bernoulli.

The proof above shows the following:
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Corollary 3.2. If f ∈ Diff1+
m (M) is generic robustly topologically

mixing and T M =Eu ⊕Ecs with central direction non-uniformly contract-
ing then f is generic robustly Bernoulli.

Also ref. 11 uses the same arguments to prove the following:

Theorem 3.3. (Burns, Dolgopyat and Pesin) If f ∈ Diff1+
m (M) has

an invariant subset A ⊂ M with m(A) > 0, such that f |A is strongly par-
tially hyperbolic with negative exponents along the central direction then
every ergodic component of f |A (and A) is open (mod 0). If f is topolog-
ically transitive then A is dense and f |A is ergodic.

This theorem will be used later for the proofs of theorems C,E and D.

3.2. Proof of Theorem B

We will follow the arguments in ref. 17. We can assume that T M =
Eu ⊕Ecs , since the other case is analogous.

By Bochi-Viana’s theorem(6), there exists a C1-residual subset R of
Diff1

m(M) such that for every f ∈ R, the Oseledets splitting is dominated
or else trivial, at almost every point. Let g ∈R∩U where U is an open set
such that every g ∈U is topologically mixing.

We recall that the residual set given by Bochi-Viana’s theorem is char-
acterized as the continuity points of the maps: �i(f )=λ1(f )+· · ·+λi(f ),
where λj (f )= ∫

M
λj (x)dm. Now, let V be an open set containing g such

that for any f,h∈V we have |�i(f )−�i(h)|� δ0.
We know that there exists a countable number of ergodic components,

and for any ergodic component C we consider the normalized Lebesgue
measure mC on supp(C) and we can use supp(C) instead of C. Recall that
the basin of mC is the set of points z such that 1

n

∑n−1
j=0 δf j (z) converges to

mC , this set has full measure in C and every orbit in the basin is transi-
tive. Now we use the basin of mC instead of C and we continue denoting
it by C.

An ergodic component C is “good” if λ2(x)<0 (the central exponent)
for every x ∈C or λ2(x)>0 and E2 ⊕E3 is dominated. Other components
are called “bad” components.

Any “good” component contains open sets (mod 0). Indeed, the case
of λ2 < 0 is in the proof of Theorem A and the other case follows from
the fact that for a conservative system, the dominated splitting Ecu ⊕Ecs

is in fact volume hyperbolic (see ref. 8). Recall that

Definition 3.4. A dominated splitting T M =E1 ⊕E2 · · ·⊕Ek is vol-
ume hyperbolic if there exist some K >0 :

|det(Df −n|Ek(x)|�Kλn , and |det(Df n|E1(x)|�Kλn .



Bernoulli Property for Partially Hyperbolic Systems 253

Because the dimension is 3 and that dim Ecs = 1 this sub-bundle is
actually uniformly contracting, and so, a stable bundle. Hence, we have in
fact a strong stable foliation, and the argument is analogous of the one in
the proof of Theorem A (using strong unstable/stable leaves).

We recall that if C is a “good” component for f then it is a “good”
component for f k for any k �1 and the same holds for “bad” compo-
nents. And by topologically mixing there exists only one “good” ergodic
component for f k, k �1.

Now we prove that the measure of the union of “bad” components
can be made arbitrarily small. Let � (f, k) be the subset of points such
that E2 ⊕E3 does not admit a k−dominated splitting and let � (f,∞)=
∩k∈N� (f, k). For the “bad” ergodic components C, we have that λ2 > 0
and E2 ⊕E3 does not admit a k−dominated splitting over C for any k∈N

and by transitivity every point x ∈C doesn’t have a k-dominated splitting.
This shows that C ⊂� (f,∞) (mod 0).

Denote J (f )= ∫
� (f,∞)

λ2−λ3
2 dm(x). Then we can use the following:

Proposition 3.5 (Proposition 4.17(6)). Given any δ > 0 and ε > 0,
there exists a diffeomorphism f1, ε near to f such that

∫
M

�2(f1, x)dm<

∫
M

�2(f, x)dm(x)−J (f )+ δ.

From the above proposition we will deduce that if the measure of bad
components is not small enough then after perturbing f a little, the aver-
age of λ1 +λ2 drastically drops. Indeed, as C ⊂� (f,∞) and on C,λ2(x)>

0 by the above proposition we get

�2(f )−�2(f1) � 1
2

∫
C

(λ2 −λ3)(f )dm− δ � 1
2

∫
C

−λ3(f )dm− δ

� m(C) inf
x∈C

−λ3(f, x)

2
− δ.

Now f is volume hyperbolic and partially hyperbolic with T M =Eu ⊕
Ecs , so det(Df |Ecs(x))<α<1 for all x ∈M and we can take α uniform in
a C1 neighborhood of g by continuity on the C1 topology of f |Ecs (x, f ).
If we take x ∈C then:

λ2(x)+λ3(x)= lim
n→∞

1
n

n−1∑
i=0

log det(Df |Ecs(f i(x)))� log(α)
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and as λ2(x)>0, we have λ3(x)< log(α) for every x ∈C. So

inf
x∈C

−λ3(f, x)

2
� − log(α)

2

and this estimate is uniform in V . Hence

δ0 ��2(f )−�2(f1)�m(C)
− log(α)

2
− δ.

Thus m(C)� δ+δ0
− log(α)

. Taking δ0 and δ small, for f ∈ V ∩ Diff1+
m (M),

m(C) is small enough. We observe that we can do this for the set Cbad ,
the union of all of the “bad” ergodic components. Then the measure of
the “good” components is large enough (which are the same for all the
iterates of f ).

Finally we conclude the proof as follows. Taking En := 1
n

-ergodic diffe-
omorphisms in Diff1+

m ∩ U , then En is open and dense in the C1 induced
topology, so E =⋂

En is a residual subset and f ∈E is Bernoulli.

3.3. Proof of theorems C, D, and E

We follow the proof of ref. 11, so we deal with the notion of ε-acces-
sibility. That is, given ε > 0, g is ε-accessible if for any open ball B of
radius ε, the union of points that can be accessible from a point in B is
the whole of M. We will also use the following lemmas that can be found
in ref. 11:

Lemma 3.6. If f is accessible, then for any ε > 0 there exists l > 0
and R > 0 such that for any p,q ∈M there exists a us-path that starts at
p, ends within distance ε/2 of q an has at most l legs, each of them with
length at most R. And there exist a neighborhood U of f in Diff2(M)

such that any g ∈U is ε-accessible.

Lemma 3.7. For any f ε-accessible every orbit is ε-dense (i.e. the
set {f n(x)}n∈Z is an ε-net set). Also, if f is essentially accessible then
almost every point has a dense orbit.

Proof of theorem C. We observe that any stable/unstable leaf of f

is also a stable/unstable leaf of any iterate of f , then f is (essentially)
accessible if and only if f k is (essentially) accessible for any k �0. Then,
the conclusions of Lemma 3.6 and 3.7 hold for any iterate of f (of course
the neighborhood U and the constants can be smaller when the iterate
growth).
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So for any iterate f k, k �0, almost every point has a dense orbit.
Then f k is ergodic and non-uniformly hyperbolic by Theorem 3.3 for all
k �0. Thus, Theorem 3.1 implies that f is Bernoulli.

Proof of theorem D. We will need the following result by Burns-
Dolgopyat-Pesin :

Theorem 3.8 (Theorem 4 of ref. 11). Let f be a C1+α strongly par-
tially hyperbolic, volume preserving diffeomorphism. Assume that f is
accessible and

∫
log ‖df |Ec

f (x)‖dµ<0.

Then f is stably ergodic.

Since any iterate of an acessible diffeomorphism is still acessible we
conclude that f j is stably ergodic for every j . The key point now is to
find a neighborhood of f where all g in this neighborhood and all of its
iterates gn are ergodic. For this we need to analyse the key tool used by
Pesin in the proof of Theorem 3.1: the Pinsker partition (the maximal par-
tition with zero entropy). First of all, Pesin shows that any ergodic compo-
nent � of a non-uniformly hyperbolic conservative C1+α diffeomorphism

can be decomposed �=
N⋃

i=1
�i into disjoint sets such that f (�i)=�i+1(i =

1, . . . ,N − 1), f (�N)=�1 and f N |�1 is Bernoulli. In Pesin’s proof, N is
the number of elements of the Pinsker partition of f |� and this number
is bounded from above by 1/θ , where θ is the measure of an open set
defined by the union of unstable local manifolds along center-stable mani-
folds. Also, all of the atoms of a Pinsker partition have the same measure.
Under the hypotheses that f j is ergodic for 1� j �N he obtains that �1
has full measure and so the Pinsker partition is trivial, that is N = 1 and
hence f is Bernoulli.

Now we shall prove that under our hypotheses the number of atoms
of the Pinsker partition is bounded from above by a constant N0 in a
neighborhood of f . Thus, it suffices to prove that there is a small neigh-
borhood V of f such that for any g ∈V , g is ergodic for 1� j �N0.

For this, recall lemmas 1 and 2 of ref. 11. The first states that there
exists an α >0 such that for any g ∈U there exists a subset Ag with posi-
tive measure such that any x ∈Ag has hyperbolic times, that is,

lim sup
n→∞

1
n

n−1∑
j−0

‖Dg|Ec
g(gj (x))‖� −α.
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This is used to prove:

Lemma 3.9 (Lemma 2 of ref. 11). There exists a neighborhood V
of f and s0 > 0 such that if g ∈ V is C2 and x ∈ Ag then there exists an
integer n�0 such that the size of Wcs(g−n(x)) is at least s0.

So, if we take an atom of the Pinsker partition of g ∈V which inter-
sects Ag we have, by permutation, a “rectangle” contained in this atom
with size at least s0. So the measure of each atom is at least r0 (the mea-
sure of the rectangle) for some r0 > 0. In particular, the number N of
atoms of the Pinsker partition is bounded from above by 1/r0 for any
g ∈V .

Finally take T the intersection of the neighborhoods such that f j is
stably ergodic for j = 1, ...,N and V . For any g ∈ T we have that gj is
ergodic for any j =1, ...,N and hence all the iterates of g are ergodic. This
shows that g is Bernoulli.

Proof of theorem E. By theorem C we know that f is Bernoulli
and has negative exponents in the central direction almost everywhere. So,
by ergodicity, there exists β >0 such that

lim
n→+∞

1
n

log ‖Df n|Ec
f (x)‖<−β a.e. x ∈M.

Hence there exists n0 >0 such that

∫
M

log ‖Df n0 |Ec
f (x)‖dm� −β.

The same estimate holds for any n�n0 and then, by Theorem D, f n is
robustly Bernoulli for n�n0. Also, as in the previous proof, if we take
V the neighborhood of f such that if g ∈ V then gn0 is Bernoulli and
gn0 satisfies the hypothesis of lemma 3.9, we obtain that g satisfies the
same conclusion of that lemma. Reasoning as in the previous proof (ana-
lyzing the Pinsker partition) we obtain a (uniform) bound for the num-
ber of atoms of the Pinsker partition for any g ∈W , where W is a smaller
neighborhood of f . Thus there exists m0 �n0 such that if g, . . . , gm0 are
ergodic then g is Bernoulli. Now we take Vi the neighborhoods of f such

that if g ∈ Vi then gi is Bernoulli and consider T = (
m0⋂
i=1

Vi ) ∩ W . This is

a neighborhood of f such that any g ∈ T is Bernoulli, completing the
proof.
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4. EXAMPLES

In this section we prove that an open set of robustly transitive and
stably ergodic partially hyperbolic in T

3 studied by Bonatti-Viana(10) are
in fact stably Bernoulli.

We recall the construction of Bonatti and Viana(10). Start with a lin-
ear Anosov diffeomorphism in T

3 and fix a fixed point. Then perform a
pitchfork bifurcation and obtain 2 hyperbolic fixed points with different
indices of stability and make the two contracting eigenvalues of one of
these fixed points to be complex. The resulting system is robustly transi-
tive, stably ergodic, partially hyperbolic with central direction mostly con-
tracting. That is, for m-almost every point x the Lyapunov exponents
along the central direction are negative. The main property of this con-
struction is that “in a neighborhood of this system every strong-stable leaf
is dense in T

3” and this implies robust transitiveness and, since there is
uniform expansion in a neighborhood of the starting diffeomorphism, also
gives topologically mixing.

We can prove that these systems are Bernoulli by our methods
because they are partially hyperbolic with mostly contracting central direc-
tion and the denseness of the unstable manifolds holds for every iterate of
any system in that neighborhood. So we obtain that every iterate is ergo-
dic. This implies that the system is stably Bernoulli, in particular, robustly
topologically mixing, because it preserves Lebesgue measure.

In the same way we can analyze the open set of ergodic diffeomor-
phisms (non-partially hyperbolic) studied by Tahzibi(18) and get that they
are in fact Bernoulli. Indeed, let us define the open set V considered by
Tahzibi. Let f0 be an Anosov diffeomorphism on T

n whose foliations
lifted to the universal covering are global graphs of C1 functions. Let
V = ∪Vi be a finite union of small balls, such that f0 has a periodic orbit
q outside V . Then f ∈V if:

• T M has small invariant continuous cone fields Ccu and Ccs con-
taining Eu and Es (the hyperbolic directions of f0.

• f is C1-close to f0 on V c. So there exist a σ >1 such that

‖(DF |T xDcu)−1‖<σ and ‖Df |T xDcs ‖<σ.

• There exists some small δ0 such that for x ∈V :

‖(DF |T xDcu)−1‖<1+ δ0 and ‖Df |T xDcs ‖<1+ δ0.

Where Dcu and Dcs are disks tangent to Ccu and Ccs .
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Theorem 4.1. Every f ∈V ∩Diff2
m(Tn) is stably Bernoulli. Also, any

f ∈V having volume hyperbolic property for Ecu ⊕Ecs has an unique SRB
measure which is a Bernoulli measure with full Lebesgue measure basin.

Proof. We proceed as in the proof in ref. 18. Given any f ∈V we will
prove that f is Bernoulli. By the arguments in ref. 18 (using dominated
splitting and volume hyperbolicity), there exist a c0 > 0 and a full Lebes-
gue measure set H such that for x ∈H we have

lim sup
n→∞

1
n

n−1∑
i=0

log ‖(Df |Ecu

f i (x)
)−1‖� − c0,

and

lim sup
n→∞

1
n

n−1∑
i=0

log ‖Df |Ecs

f i (x)
‖� − c0.

Then, get a disk tangent to Ccu everywhere and intersecting H in a pos-
itive Lebesgue measure (of the disk). And construct an invariant measure
ν that is an accumulation point of the sequence of averages of forward
iterates of Lebesgue measure restricted to the disk. By ref. 2, Proposition
4.1, there exist a cylinder C (diffeomorphic to Bu ×Bs , balls with dimen-
sion dim(Ecs) and dim(Ecu) respectively), and a family K∞ of pairwise
disjoint disks Di contained in C which are graphics over Bu, and such
that the union has positive ν measure and ν (restricted to that union)
has absolutely continuous conditional measure along the disks in K∞.
This measure is used to construct a cu-Gibbs state such that an ergodic
component has positive measure (with respect to this measure). Hence,
we can write M = ∪B(µi) where µi are cu-Gibbs states (in fact ergodic
SRB measures). We observe that Tahzibi constructed stable and unstable
manifolds and proved absolute continuity for these systems.

Now we use the fact that if V is small enough then the stable man-
ifold of q intersects any disk tangent to Ccu with radius bigger than ε0
(for some small ε0), the same holds for the unstable manifold. With this
we have

Proposition 4.2 (Proposition 5.1 of ref. 18). The stable manifold of
q is dense and intersects transversally each Di .

Following Tahzibi, with help of this proposition, we can prove that
the intersection of the basins B(µi) of each µi is non-empty. Because the
µ′

i s are ergodic, the µ′
i s are all the same and hence f is ergodic. Now we

stress that the construction of the µ′
i s is getting ergodic components of the

original measure. So, in the end, all of the µ′
i s are equal to this measure.
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Now fix k >0. Since, by construction, ν is invariant for all f k we can
repeat the argument above. For each i we can write B(µi)=∪B(µk

i ) where
µk

i are the f k-ergodic components of µi , and there exist D
k,∞
i a disk on

K∞ contained in B(µk
i ) with the same property as Di . The number of

ergodic components can grow up, but to prove that their basins intersects
depend only from proposition 4.2, which also holds for any iterate f k. So
again, all the µk

i are equal to the original measure µi , which coincides
with ν. Thus, f k is also ergodic all k.

Now applying Theorem 3.1 we conclude that f is Bernoulli. The dis-
sipative case is analogous. The proof of Theorem 4.1 is complete.

Remark 2. We observe that this open set has robustly topologically
mixing non partially hyperbolic diffeomorphisms.

5. FINAL REMARKS

We point out as we can obtain “generic” statements of our theorems
using some “generic” tools, as for instance, the following theorem:

Theorem 5.1 (Dolgopyat, Wilkinson). Generically a strongly par-
tially hyperbolic diffeomorphism f is stably accessible.

So we can drop the accessibility hypothesis over a residual set.
An interesting question is if one can drop the robustly topologically

mixing condition in a generic set inside the robustly transitive diffeo-
morphisms. The results in ref. 1 indicate that there is a generic set of
topologically mixing diffeomorphisms inside the set of robustly transitive
diffeomorphisms. Using this result together with the result of Bonatti and
Crovisier(7) stating that generically a volume preserving diffeomorphism is
transitive we can drop the robustly topologically mixing condition over a
generic set of partially hyperbolic diffeomorphisms.
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